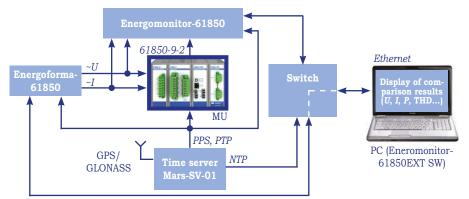


REFERENCE STANDARD FOR DIGITAL SUBSTATIONS

Energomonitor-61850

Accuracy class 0.02, 0.05


Functions

- ✓ Reference merging unit
- ✓ Comparator

Application

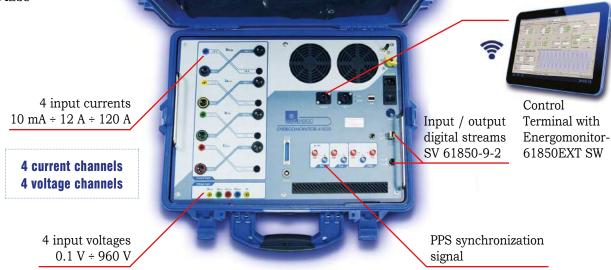

Accuracy testing of analog and digital instrument transformers (CTs and VTs), Merging Units (SAMU), and Phasor Measurement Units (PMU).

Diagram for testing merging unit

Designated for:

- ✓ Manufacturing plants
- ✓ Test labs

Accuracy specifications for basic parameters

Macaused managed on	Macaurament range	Intrinsic measurement error		
Measured parameter	Measurement range	Accuracy class 0.02	Accuracy class 0.05	
AC voltage	0.1 to 960 V (U _{NOM} = 1, 2, 5, 10, 30, 60, 120, 240, 480, 800 V)	±0.01 %	±0.02 %	
AC current	10 mA to 120 A (I _{NOM} = 0.1; 0.25; 0.5; 1; 2.5; 5; 10; 25; 50; 100 A)	±0.01 %	±0.02 %	
Phase angle between the 1st voltage harmonics		Absolute:		
or between the first harmonics of voltage and current in the same phase	0° to 360°	±0.003°	±0.01°	
A		Relative:		
Apparent power		0.02 %	0.04 %	
A	$0.1 U_{ m NOM}$ to $1.2 U_{ m NOM}$ V	Relative:		
Active power	0.1 <i>I</i> _{NOM} to 1.2 <i>I</i> _{NOM} , A	±0.01 %	±0.05 %	
D		Relative:		
Reactive power		±0.03 %	±0.1 %	
ACI C	40 4 70 11	Abso	lute:	
AC frequency	40 to 70 Hz	±0.0002 Hz	±0.001 Hz	
Mars-Energo	•	1		

REFERENCE STANDARD FOR DIGITAL SUBSTATIONS

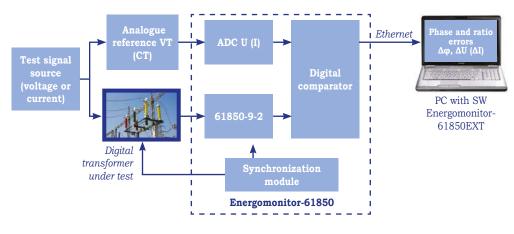
Energomonitor-61850-M-2

Accuracy class 0.02, 0.05

Options

1current phase 1 voltage phase

Benefits


- ✓ Basically intended for accuracy testing of analogue and digital current and voltage transformers
- ✓ Ideal for use due to the compact design, light weight and minimal cost of ownership

Accuracy specifications as applied to testing of transformers

Error (absolute)	Analogue CTs and VTs	Digital CTs and VTs (IEC 61580)
Ratio	±0.002 %	±0.015 %
Phase	±0.1 min	±1 min

Test scheme for digital CTs and VTs (61850-9-2LE)

Status: In development

3

TEST SIGNAL / PHANTOM POWER SOURCE

Energoforma-61850-100

Functions

1. Real-time mode

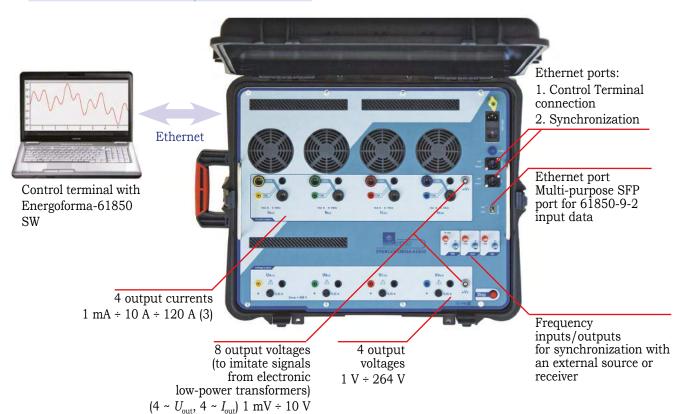
The instrument converts digital streams SV61850-9-2 into analogue current / voltage waveforms.

2. Stand-alone mode

The instrument digitally synthesizes output analogue signals from customer-specified parameters (with the possibility to download and add modulating signals to the generated waveforms)

Basic specifications

Parameter	Value
Number of channels	8 channels (4 currents and 4 voltages)
DAC resolution	18 bit
Number of points per period	4096
Data exchange rate	35 Mbit/s
Harmonics	1 to 100
Interharmonics	0.1 to 100.5 in increments 0.1


Benefits

Generation of synchronized current and voltage test signals for accuracy testing / calibration of:

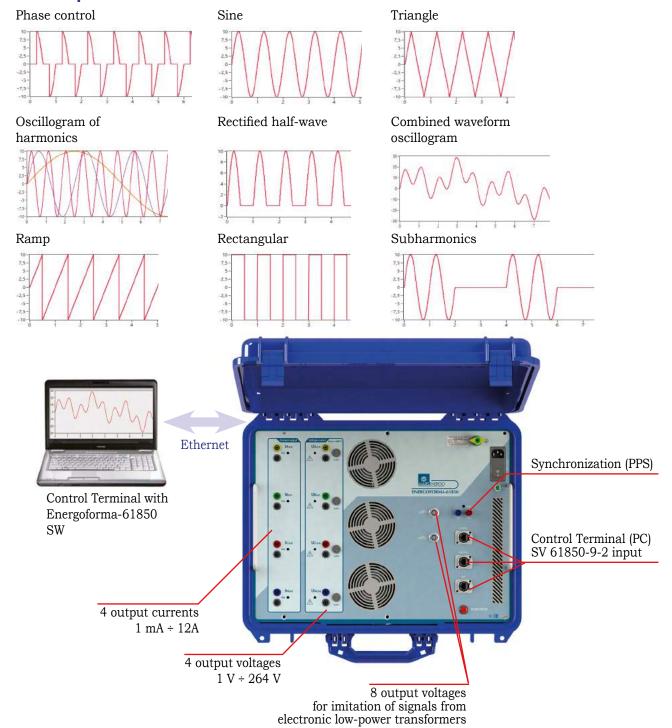
- ✓ Merging Units (SAMU)
- ✓ Power quality analyzers
- ✓ Phasor Measurment Units (PMU)

Options

100 A \times 3; 12 A \times 4; 260 V \times 4

TEST SIGNAL / PHANTOM POWER SOURCE

Energoforma-61850-12


Options Functions

The EF-61850-12 generates current (4 phases) and voltage (4 phases) waveforms used to perform time-synchronized tests for measuring instruments in digital substations.

12 A × 4; 260 V × 4

Waveshapes

Status: In development

 $(4 \sim U_{\text{out}}, 4 \sim I_{\text{out}}) 1 \text{ mV} \div 10 \text{ V}$

5

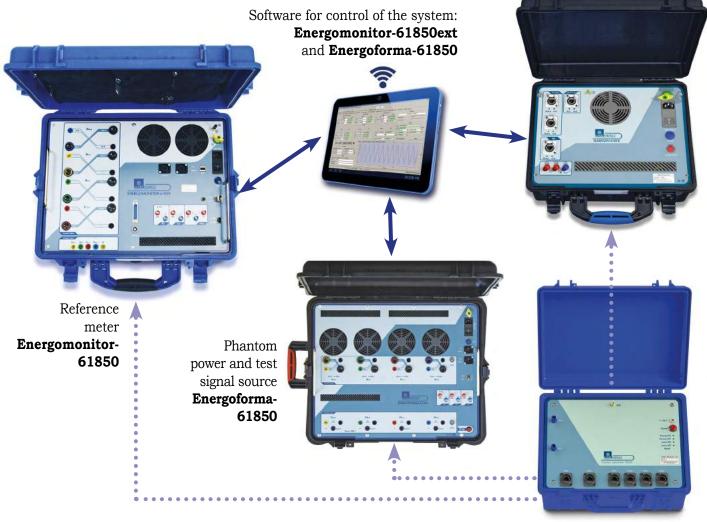
Mars-Energo

MULTIFUNCTIONAL PORTABLE LOW-VOLTAGE REFERENCE SETUP

MarsTest-61850-P

Function

This is a new generation of portable reference setups which perform electrical power measurements and generate reference electrical signals.

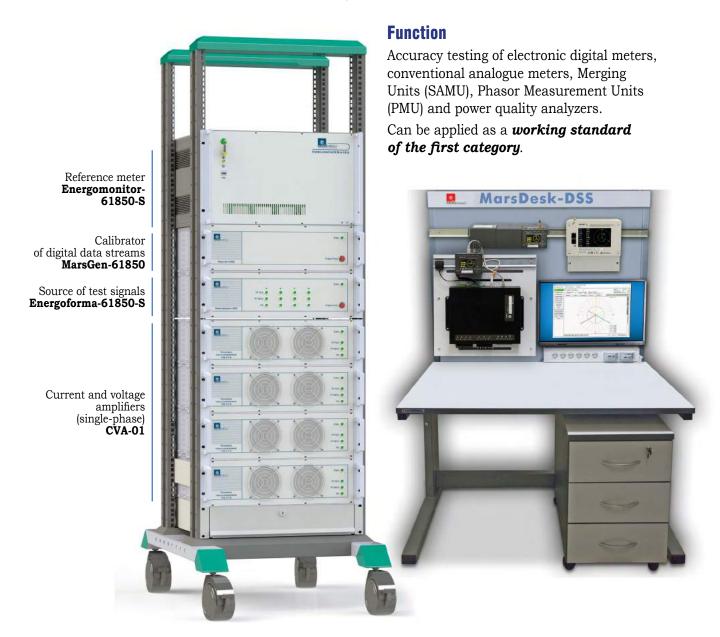

Unlike typical reference setups, the MarsTest-61850-P supports calibration of both conventional and 61850-9-2LE-compliant measurement equipment.

Sphere of application

Accuracy testing and calibration of measurement channels in either conventional or digital substations.

Calibrator of digital data streams

MarsGen-61850



Time Server Mars-SV-01

MULTIFUNCTIONAL LABORATORY REFERENCE SETUP

MarsTest-61850-S

Accuracy classes 0.02, 0.05

Basic specifications for Generator

AC voltage	3 × 0.1 528 V / 200 VA
AC current	3 × 1 mA 120 A / 200 VA
Angles	3 × 0 360°
Frequency of the 1st harmonic	42 70 Hz
Harmonic (interharmonic)	
numbers	1100 (0.1100.5)
Voltage dips and swells, flicker	IEC
DC voltage*	0 300 V / 600 W
DC current*	0 100 A / 600 W

 $[\]ensuremath{^*}$ In the presence of DC amplifier unit.

Basic specifications for Reference standard

Voltage 0.1÷960 V ±0.01 % ±0.02 %	
Current (AC/DC) 1 mA÷120 A ±0.01 % ±0.02 %	
Angles U-I, U-U $0 \div 360^{\circ}$ $\pm 0.01^{\circ}$ $\pm 0.03^{\circ}$	
Active power $\pm 0.015\%$ $\pm 0.05\%$	

CALIBRATOR OF DIGITAL DATA STREAMS

MarsGen-61850

Accuracy class 0.05

Function

The instrument is intended for synthesis of IEC 61850-9-2 data streams which are directly applied to accuracy tesing and calibration of the following measuring instruments with digital outputs:

- ✓ energy meters
- ✓ power quality meters.

Setting accuracy of digital signals

Parameter	Range	Increments	Intrinsic error		
Fundamental harmonic					
Fundamental frequency	40 500 Hz	0.00001	±0.0003 %		
Voltage	10 mV 15 MV	10 μV	±0.03 %		
Current	1 mA 1.5 MA	1.0 μΑ	±0.03 %		
Phase shift angle	−180° +180°	0.0001	0.03°		
Active power	0,01 W 15 TW	_	±0.05 %		
Power quality parameters					
Harmonic (interharmonic) order	0.1 50	0.1	_		
RMS of voltage or current (% of fundamental)	0 50 %	0.0001	±0.01 %		
Flicker	0.2 10	_	±1.5 %		
Duration of events	0.02 600 s	_	0.005 s		
Frequency	1 Hz	_	±2 · 10 ⁻⁶ Hz		

TRAINING TEST BENCH FOR MAINTENANCE OF DIGITAL SUBSTATION EQUIPMENT

MarsDesk-DSS-M

The MarsDesk-DSS-M is designed to train electricians to test/calibrate measurement equipment in a digital substation: digital energy/PQP meters with IEC 61850-9-2 inputs, phasor measurement units etc.

The test bench provides a complete suite of means for testing measurement equipment in a digital substation with the calibrator MarsGen 61850.

It is used to train and skill up electricians so that they can meet the new digitalization requirements of energy sector.

Designated for:

- Training centers
- Science lab centers
- Manufacturers of digital meters

The package also includes:

MULTI-PURPOSE TEST SYSTEM FOR CALIBRATION OF SMART METERS CONNECTED TO ELECTRONIC TRANSFORMERS WITH LOW-POWER ANALOGUE OUTPUTS

MTS-ME 3.1KM-E

Error calculatorCalmar-S

Purpose and sphere of application

Accuracy testing and calibration of smart energy meters of accuracy class 0.2S (or less accurate) specified by IEC 60044-X standards.

Basic customers: manufacturers of smart meters, accredited metrological labs and certification bodies.

2 SW EnformMTS-E

Software:

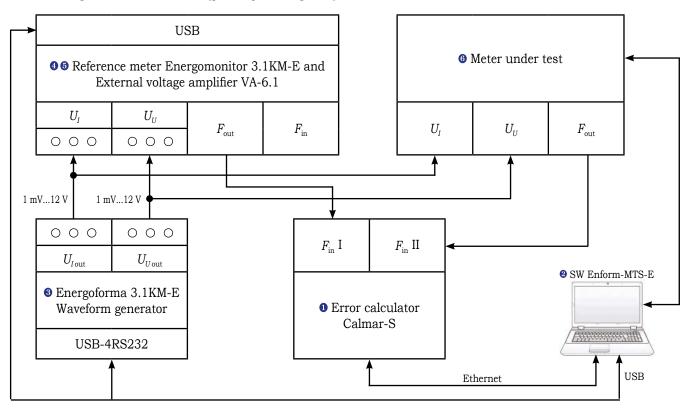
- Controls the waveform generator Energoforma 3.1KM-E and reference meter Energomonitor 3.1KM-E,
- Receives the results of measurement error calculation from the Calmar-S
- Creates test reports and maintains the database of meters.
- **3** Source of test signals **Energoforma-3.1KM-E**
- 4 Voltage amplifier VA-6.1
- **6** Reference meter **Energomonitor-3.1KM-E**

Benefits

- ✓ Measuring range: 1 mV ... 1000 V
- ✓ Suitable for use in avionic and marine applications (with a fundamental frequency of 400 Hz)

O Devices (smart meters) under test

Accuracy classes: 0.02; 0.05


Range of signals from low-power electronic transformers: 6 channels (3 \times I, 3 \times U) from 1 mV to 10 V

Accuracy specifications of MTS-ME 3.1KM-E (with respect to testing of IEC 60044 devices)

Measured values	Measurement range	Measurement error	Notes
AO 11 (III)	1 1/ 10 1/	Relative, %, or less	U _{U_{NOM}} : 10 mV; 100 mV; 1 V; 10 V
AC voltage (U_U)	1 mV 12 V	±0.02	$U_{U_{\text{NOM}}} > 2 \text{ V}$
		±0.03	$U_{U_{\text{NOM}}} \le 2 \text{ V}$
A.C. (III)	1 17 10 17	Relative, %, or less	<i>U</i> _{I_{NOM}} : 1; 10; 100 mV; 1; 10 V
AC current (U_j)	1 mV 12 V	±0.02	$U_{I_{\text{NOM}}} > 2 \text{ V}$
		±0.03	$U_{\text{INOM}} \le 2 \text{ V}$
	$0.01P_{ m NOM}$ to $1.44P_{ m NOM}$	Relative, %, or less	0.9 < cos φ < 1.0
Active electrical power (P)		±0.02	$U_{\text{NOM}} > 2 \text{ V}$
		±0.03	$U_{\text{NOM}} < 2 \text{ V}$
Power factor (PS=P/S)	0.1 to 1.0	Absolute ±0.001	
AC frequency (f_i)	40to 70 Hz 400 Hz	Absolute, Hz ±0.001	
Phase angle between the fundamental harmonics of input voltage and current in the same phase (ϕ_1) , degrees	0 to 360	Absolute, degrees ±0.01	

Output power of the generator Energoforma 3.1KM-E: at least VA per a channel.

Calibrating the smart meter (principle diagram)

REFERENCE COMPARATOR FOR ACCURACY TESTING / CALIBRATION OF ELECTRONIC LOW-POWER INSTRUMENT TRANSFORMERS OF VOLTAGE AND CURRENT (LPIT)

MarsComp K-1000

Benefits

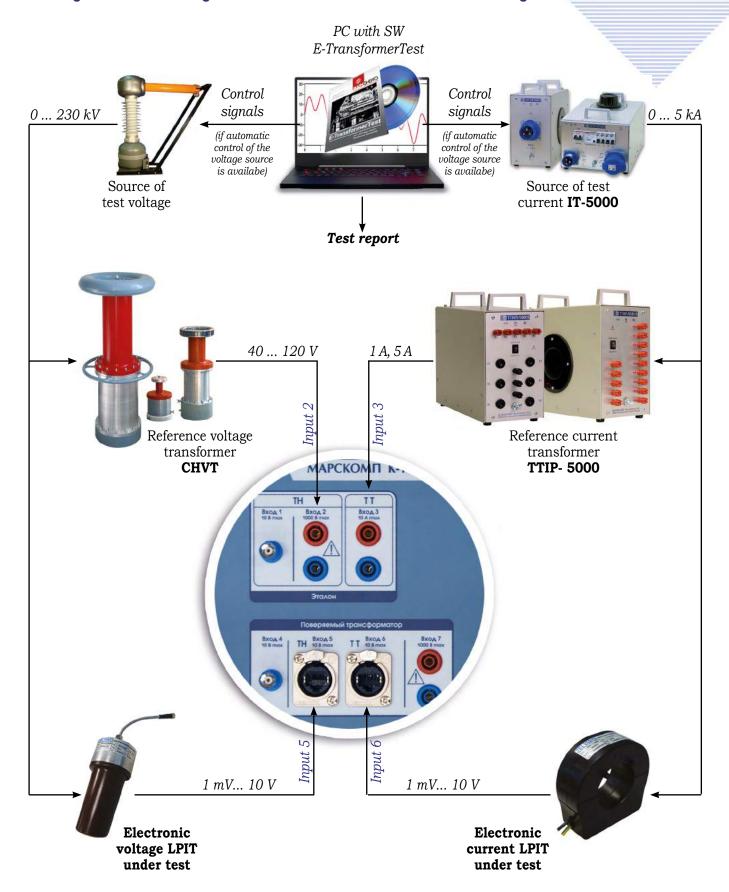
- One and the same instrument performs two functions: accuracy testing/calibration of both voltage and current transformers.
- Conventional CTs (1 A, 5 A) and VTs (100 V, 100/√3 V) can be used as reference transformers (together with the MarsComp).

Accuracy class 0.02

Accuracy specifications as applied to testing of electronic VTs or CTs

Error (absolute)	Limits of permissible error	
Ratio (voltage, current), %	±0.015	
Phase, min	±1.0	
Composite, %	±0.03	

Accuracy specifications as applied to testing of conventional (analogue) VTs or CTs


Error (absolute)	Limits of permissible error	
Ratio (voltage, current), %	±0.002	
Phase, min	±0.1	

Complex voltage / current LPITs under test

Testing electronic voltage LPIT

Testing electronic current LPIT

AMPLITUDE / FREQUENCY RESPONSE MEASUREMENT SYSTEM FOR CERTIFICATION OF INSTRUMENT VOLTAGE TRANSFORMERS

MarsTest-VT-PQ

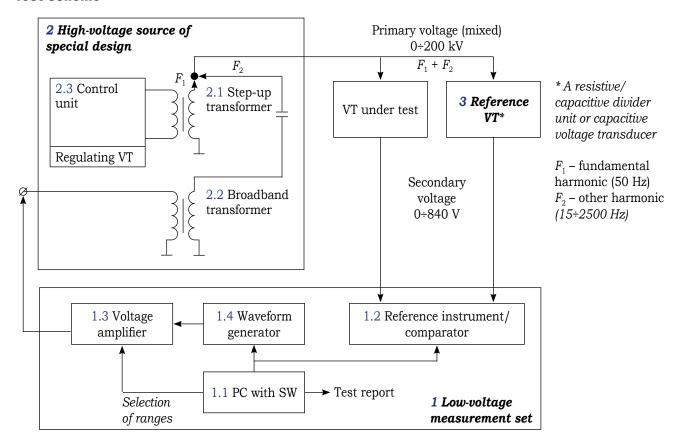
Purpose and sphere of application

The MarsTest-VT-PQ is a system that automates amplitude/frequency response certification tests of instrument voltage transformers (VTs) 6...220 kV. During these tests voltage harmonics of order from 0.3 to 50 (15 Hz to 2.5 kHz) are applied to the transformers, while the amplitude and phase angle (0 to 10°) measurements are performed upon them according to IEC/TR 61869-103.

The system covers the needs of VT manufacturers, certification labs, power distrubution companies etc.

Purpose of the certification tests

To make a conclusion on the suitability of transformers under test for power quality measurements.


Accuracy specifications for the low-voltage measurement set

Measured parameter	Measurement range	Type and limits of permissible measurement error	Notes
1 RMS of voltage (at frequency f), V	$0.1 U_{\scriptscriptstyle m UL}$ to $U_{ m UL}$	Relative, % ±[0.05+0.02(<i>U</i> _{UL} / <i>U</i> – 1)]	Frequency of the 1st voltage harmonic $f = h \cdot 50$, where the harmonic order number h belongs to the intervals: - 0.2 to 0.9 in steps of 0.1 - 1 to 60 (inclusive) in steps of 1
2 Frequency of AC voltage f, Hz	15 to 2500 Hz	Relative, % ±0.02	$0.1U_{\rm UL} < U < U_{\rm UL}$
3 RMS of the odd and even voltage harmonic components of order h, where h = 0.3 to 50 (15 Hz to 2.5 kHz), V	$0.1 U_{\scriptscriptstyle m UL}$ to $U_{\scriptscriptstyle m UL}$	Relative, % $\pm [0.05 + 0.02(U_{UL}/U - 1)]$	Frequency of the 1st voltage harmonic <i>f</i> : 45 to 55 Hz
4 Phase angle between the voltage waveforms of frequency <i>f</i> across two channels	0 to 10°	Absolute, 1 min Absolute, 10 min	0 to 60 min 1 to 90°
5 Phase angle between the voltage harmonic components across two channels (φ_h), min	0 to 60	Absolute, 10 мин	h = 0.3 50 at a rated fundamental voltage of 50 Hz

 U_{UL} – the upper limit of voltage measurement range: 0.84; 1.68; 4.2; 8.4; 84; 168; 420; 840 V

U – the voltage reading

Test scheme

HIGH-VOLTAGE MOBILE TEST LAB

Designated for accuracy testing and calibration of IEC 61850-9-2 devices (merging units, digital meters and phasor measurement units) and electronic transformers with digital outputs of the following types:

- ✓ AC current transformers up to 5 kA (IEC 60044-8-2010)
- ✓ AC voltage transformers up to $330/\sqrt{3}$ kV (IEC 60044-7-2010).

Accuracy specifications

Accuracy class of refer-	Limits of permissible measurement error		
ence current* or voltage** transformer	ratio, %	phase, min	composite, %
0.05	0.056	3.32	0.12

* Current range – 50 A ... 5 kA

** Voltage range – $6/\sqrt{3}$... $110/\sqrt{3}$... $330/\sqrt{3}$ kV

Basic components:

✓ Reference setup Mars-Test-61850 (1)

✓ Adjustable sources of voltage and current (2 and 3)

✓ Reference voltage and current transformers (4 and 5)

E-mail: mars@mars-energo.com korneeva@mars-energo.ru Tel.: +7 812 327-21-11

Russia

Mars-Energo

V.O. 13 Line, 6-8 Saint-Petersburg, Russia, 199034 E-mail: mail@mars-energo.ru www.mars-energo.com

Estonia

OU "ESME"

Kadastiku 25a, Narva, Estonia, 21004 E-mail: mail@esme.ee Tel.: +372 568-099-99

www.esme.ee